Energy

Categories: Energy
Contact: [email protected] (Sara Marxen)
Origin: CSA
Close date: Oct 8, 2023
View moreView less
 

1.1 Inclusions

This Standard specifies the minimum testing requirements for verifying the fuelling protocols specified in SAE J2601 and the communications protocols in SAE J2799.

 

This Standard applies to dispensing systems, referred to as dispensers in this Standard, designed to fill vehicle storage systems in accordance with SAE J2601.

 

Note: The SAE J2601 fuelling protocols target rapid fills while respecting temperature, pressure, and fuel density safety limits.

 

Note: This Standard is a minimum requirement. Manufacturers can take additional safety precautions.

1.2

This Standard was developed for and is intended to be used with the specific editions of SAE J2601 and SAE J2799 as referenced in Clause 2.

1.3

For dispensers with the capability for communications with the vehicle, these test methods include the approach to confirm the requirements specified in SAE J2799 and SAE J2601.

1.4

Newly manufactured dispensers should be tested according to this Standard prior to initial operation of the dispenser for fuelling vehicles. This Standard is also intended to provide test methods for validation of existing dispensers.

1.5

Unless otherwise specified, the requirements in this Standard apply to the verification of SAE J2601 compliant hydrogen fuelling stations (HFS).

1.6

In the case of conflict between this Standard and federal, provincial/territorial, state, or local requirements, the governmental requirements take precedence.

1.7

The values given in SI units are the units of record for the purposes of this Standard. The values given in parentheses are for information and comparison only.

1.8

All references to pressure throughout this Standard are to be considered gauge pressure unless otherwise specified.

1.9

In this Standard, “shall” is used to express a requirement, i.e., a provision that the user shall satisfy in order to comply with the Standard; “should” is used to express a recommendation or that which is advised but not required; “may” is used to express an option or that which is permissible within the limits of the Standard.

Notes accompanying clauses do not include requirements or alternative requirements; the purpose of a note accompanying a clause is to separate from the text explanatory or informative material.

Notes to tables and figures are considered part of the table or figure and may be written as requirements.

Annexes are designated normative (mandatory) or informative (non-mandatory) to define their application.

 

Categories: Energy
Contact: [email protected] (Anahita Jami)
Origin: CSA
Close date: Oct 14, 2023
View moreView less
 

This document describes the method of determining the moisture content of a test sample of solid biofuels by drying in an oven and can be used when high precision of the determination of moisture content is necessary. The method described in this document is applicable to all solid biofuels. The moisture content of solid biofuels (as received) is always reported based on the total mass of the test sample (wet basis).

NOTE Biomass materials can contain small amounts of volatile organic compounds (VOC) which can evaporate when determining moisture content by oven drying (see References [1] and [2]). The release of such compounds is quite small relative to the overall moisture content as determined by this method and is disregarded in this document.

Categories: Energy
Contact: [email protected] (Anahita Jami)
Origin: CSA
Close date: Oct 14, 2023
View moreView less
 

This document describes the method of determining the moisture content in the general analysis sample by drying in an oven. The method described in this document is applicable to all solid biofuels. The moisture content of solid biofuels (as received) is always reported based on the total mass of the test sample (wet basis). Since biofuels in small particle size are very hygroscopic, their moisture content will change with humidity in the atmosphere and, therefore, the moisture of the general analysis sample is determined simultaneously with the determination of other properties being measured (e.g. calorific value, volatile matter, metals, etc.).

NOTE Biomass materials can contain small amounts of volatile organic compounds (VOC) which can evaporate when determining moisture content by oven drying (see References [1] and [2]). The release of such compounds is quite small relative to the overall moisture content as determined by this method and is disregarded in this document.

Categories: Energy
Contact: [email protected] (Brett Weinkauf)
Origin: CSA
Close date: Oct 20, 2023
View moreView less
 

1.1

This Standard covers the design of wells in the land-based sector of the energy industry. This standard is inclusive of wellhead to final drilled depth.

1.2

This Standard addresses

a) casing, including casing design for various types of wells, including but not limited to horizontal and directional wells;

b) cementing, including cement design and centralization issues and practices; and

c) wellhead, including design, and assembly.

1.3

This Standard does not apply to

a) completion;

b) operations;

c) abandonment;

d) remedial cementing;

e) interventions;

f) suspensions;

g) competencies;

h) management system requirements;

i) drilling operations;

j) emerging technologies;

k) design tools;

l) offshore and arctic applications;

 

1.4

This Standard is intended to establish essential requirements and minimum standards for the design of wells in the oil and gas industry. This Standard is not a design handbook, and competent design practice and judgment must be employed with its use.

It is not the intent of this Standard to prevent the development of new equipment or practices, nor to prescribe how such innovations should be handled.

1.5

The requirements of this Standard do not apply retroactively to existing installations or installations under construction at the time of publication, but they do apply to the extension, replacement, maintenance, and upgrading of such installations.

1.6

In this Standard, “shall” is used to express a requirement, i.e., a provision that the user is obliged to satisfy in order to comply with the standard; “should” is used to express a recommendation or that which is advised but not required; and “may” is used to express an option or that which is permissible within the limits of the Standard.

Notes accompanying clauses do not include requirements or alternative requirements; the purpose of a note accompanying a clause is to separate from the text explanatory or informative material.

Notes to tables and figures are considered part of the table or figure and may be written as requirements.

Annexes are designated normative (mandatory) or informative (non-mandatory) to define their application.

Categories: Energy
Contact: [email protected] (Eve Stencel)
Origin: CSA
Close date: Oct 31, 2023
View moreView less
 

1.1 Application

This Standard defines requirements for the process of qualification of digital hardware and software for use in instrumentation and control applications for NPPs.

Notes:

This Standard applies to individual safety-related programmable digital devices containing software or programmable logic (e.g., devices such as application-specific integrated circuit (ASICs), complex programmable logic device (CPLD), and field-programmable gate array (FPGAs)). This can be in any plant system.

This Standard may provide guidance for nuclear facilities other than NPPs, using a graded approach.

Cyber security concerns for digital items in the scope of this Standard are covered by CSA N290.7.

1.2 Relevant topics

This Standard refers directly to other industry standards for topics related to the categorization of functions, hardware qualification aspects, and software qualification aspects.

1.3 Exclusions

This Standard does not apply to business systems (e.g., business applications, desktop computers, email, business networks), analysis software (e.g., scientific, engineering, and safety analysis software), or passive devices (e.g., wires), unless they are part of a safety-related computing system.

Note: For requirements related to analysis software refer to CSA N286.7.

1.4 Candidate product integration

Annex E, provides guidance that focuses on activities unique to the integration of a digital item, based on recent best practice and operating experience.

Note: Refer to CSA N290.12 for integration concerns with respect to human factors.

1.5 Assumptions

This Standard assumes that the candidate product has been previously assessed as functionally suitable for the proposed application.

Note: Functional suitability is a determination of the degree to which a product can meet the specified requirements including confirmation that the use of the digital item does not conflict with the requirements of the application. This Standard is used to qualify the product after this determination is made.

1.6 Precedence

In cases of conflict between this Standard and other Standards which it references, this Standard takes precedence.

1.7 Terminology

In this Standard, “shall” is used to express a requirement, i.e., a provision that the user is obliged to satisfy in order to comply with the standard; “should” is used to express a recommendation or that which is advised but not required; and “may” is used to express an option or that which is permissible within the limits of the Standard.

Notes accompanying clauses do not include requirements or alternative requirements; the purpose of a note accompanying a clause is to separate from the text explanatory or informative material.

Notes to tables and figures are considered part of the table or figure and may be written as requirements.

Annexes are designated normative (mandatory) or informative (non-mandatory) to define their application.

Categories: Energy
Contact: [email protected] (Eve Stencel)
Origin: CSA
Close date: Oct 31, 2023
View moreView less
 

1.1 Application

Cette norme établit des exigences visant le processus de qualification des matériels numériques et des logiciels utilisés dans les utilisations d’instrumentation et de commande des centrales nucléaires.

Notes :

1) Cette norme s’applique aux dispositifs numériques liés à la sûreté et programmables contenant des logiciels ou composants logiques programmables [p. ex., composants tels que des circuits intégrés à utilisation spécifique (ASIC), des composants logiques programmables complexes (CPLD) et des matrices prédiffusées programmables par l’utilisateur (FPGA)]. Cela pourrait s’appliquer dans n’importe quel système de la centrale.

2) Cette norme peut être utile aux installations nucléaires autres que des centrales, qui font appel à une méthode graduelle.

3) Les préoccupations en matière de cybersécurité en ce qui a trait aux éléments numériques visés par le domaine d’application de cette norme sont traitées dans CSA N290.7.

1.2 Sujets pertinents

Cette norme renvoie directement aux normes de l’industrie en ce qui a trait à la catégorisation des fonctions, à la qualification des matériels et à la qualification des logiciels.

1.3 Exclusions

Cette norme ne s’applique pas aux systèmes de gestion (p. ex., utilisations de gestion, ordinateurs de bureau, courriel, réseaux commerciaux), aux logiciels d’analyse (p. ex., logiciels d’analyse scientifique, technique et de sûreté), ni aux dispositifs passifs (p. ex., conducteurs), à moins qu’ils ne soient intégrés à un système informatique lié à la sûreté.

Note : Les logiciels d’analyse sont visés par la CSA N286.7.

1.4 Intégration du produit candidat

L’annexe E traite des activités uniques à l’intégration d’un élément numérique, et s’appuie sur les pratiques exemplaires les plus récentes de même que sur l’expérience opérationnelle récente.

Note : La CSA N290.12 traite des préoccupations liées à l’intégration en ce qui a trait aux facteurs humains.

1.5 Hypothèses

Cette norme suppose que le produit candidat a déjà été évalué et qu’il convient, sur le plan fonctionnel, à l’utilisation proposée.

Note : La pertinence sur le plan fonctionnel consiste à déterminer dans quelle mesure un produit est en mesure de satisfaire aux exigences prescrites, et à confirmer que l’utilisation de l’élément numérique ne créera pas de conflit avec les exigences de l’utilisation. Cette norme sert à la qualification du produit une fois cette détermination faite.

1.6 Ordre de priorité

En cas de conflit entre cette norme et d’autres normes citées en référence, cette norme prime.

1.7 Terminologie

Dans cette norme, le terme «doit» indique une exigence, c’est-à-dire une prescription que l’utilisateur doit respecter pour assurer la conformité à la norme ; «devrait» indique une recommandation ou ce qu’il est conseillé mais non obligatoire de faire ; et «peut» indique une possibilité ou ce qu’il est permis de faire.

Les notes qui accompagnent les articles ne comprennent pas de prescriptions ni de recommandations. Elles servent à séparer du texte les explications ou les renseignements qui ne font pas proprement partie de la norme.

Les notes au bas des figures et des tableaux font partie de ceux-ci et peuvent être rédigées comme des prescriptions.

Les annexes sont qualifiées de normatives (obligatoires) ou d’informatives (facultatives) pour en préciser l’application.

Categories: Energy
Contact: [email protected] (Anahita Jami)
Origin: CSA
Close date: Nov 5, 2023
View moreView less
 

1.1 Object

This Standard provides a method for measuring fireplace, steady-state, and radiant efficiency.

1.2 Appliances included in scope

This Standard applies to vented gas fireplaces meeting the requirements of ANSI Z21.50 • CSA 2.22 and to vented gas fireplace heaters meeting the requirements of CSA/ANSI Z21.88 • CSA 2.33 that use natural gas or propane.

1.3 Appliances excluded from scope

This Standard does not apply to decorative fireplaces meeting the requirements of ANSI Z21.60 • CSA 2.26.

1.4 Applicable test methods

This Standard includes

a) a test method for cyclic and part-load performance;

b) methods for interpolating and extrapolating test data;

c) calculation procedures for establishing steady-state and seasonal performance; and

d) calculation procedures for establishing radiant efficiency.

1.5 Terminology

In this Standard, “shall” is used to express a requirement, i.e., a provision that the user is obliged to satisfy in order to comply with the standard; “should” is used to express a recommendation or that which is advised but not required; and “may” is used to express an option or that which is permissible within the limits of the standard.

Notes accompanying clauses do not include requirements or alternative requirements; the purpose of a note accompanying a clause is to separate from the text explanatory or informative material.

Notes to tables and figures are considered part of the table or figure and may be written as requirements.

Annexes are designated normative (mandatory) or informative (non-mandatory) to define their application.

1.6 Units of measurement

The values given in SI (metric) are the units of record for the purposes of this Standard. The values given in parentheses are for information and comparison only.

Categories: Energy
Contact: [email protected] (Julie Cairns)
Origin: CSA
Close date: Nov 5, 2023
View moreView less
 

1.1 Applicability

This Standard applies to the design, installation, inspection, repair, and maintenance of the fuel storage and delivery system used as a provision for motive power. This Standard specifically addresses

a) On-road vehicles (highway vehicles);

b) Off- road vehicles (mining and construction); and

c) Powered industrial trucks (forklifts and TUGs).

Note: This Standard is intended to cover the fuel storage and delivery system as defined in Figure 1. Elements downstream of the regulation device(s) or stage(s) such as the low pressure delivery line and injectors are not included in the Scope of this Standard.

1.2 Exclusions and future editions

1.2.1 Exclusions

This Standard does not apply to

a) stationary engines;

b) mobile equipment using natural gas as a fuel for other than propulsion;

c) electronic control module or controls strategy of a fuel management system;

d) storage or utilization of natural gas on marine vessels or rail vehicles;

e) liquefied natural gas (LNG) fuel storage systems; or

f) compressed natural gas (CNG) gaseous portion of LNG vehicles.

1.2.2 Future editions

Future editions of this Standard might include

a) liquefied natural gas (LNG) fuel storage system;

b) compressed natural gas (CNG) portion of an LNG vehicle;

c) storage or utilization of natural gas on boats or trains;

d) recreational all-terrain vehicles; and

e) motorcycles.

1.3 Pressure references

All references to pressure throughout this Standard are to be considered gauge pressures, unless otherwise specified.

1.4 Units of measure

The values given in SI units are the units of record for the purposes of this Standard. The values given in parentheses are for information and comparison only.

Notes:

1) IEEE/ASTM SI 10 or ISO 80000-1 can be used as a guide when converting Imperial units to metric units.

2) Where the word “gallon” is used in this Standard, it indicates a U.S. gallon equivalent to 3.785 liters water capacity.

1.5 Mandatory and informative provisions

In this Standard, “shall” is used to express a requirement, i.e., a provision that the user is obliged to satisfy in order to comply with existing codes and this Standard; “should” is used to express a recommendation or that which is advised but not required; and “may” is used to express an option or that which is permissible within the limits of the Standard.

Notes accompanying clauses do not include requirements or alternative requirements; the purpose of a note accompanying a clause is to separate from the text explanatory or informative material.

Notes to tables and figures are considered part of the table or figure and may be written as requirements.

Annexes are designated normative (mandatory) or informative (non-mandatory) to define their application.

1.6 French translations

Annex G contains French translations for systems markings required for Canada.

Categories: Energy
Contact: andrew.kostruba
Origin: CSA
Close date: Nov 10, 2023
View moreView less
 

This part of IEC 61400 applies to lightning protection of wind turbine generators and wind power systems.  Refer to Annex M guidelines for small wind turbines. This document defines the lightning environment for wind 
turbines and risk assessment for wind turbines in that environment. It defines requirements for protection of blades, other structural components and electrical and control systems against both direct and indirect effects of lightning. Test methods to validate compliance are included. Guidance on the use of applicable lightning protection, industrial electrical and EMC standards including earthing is provided. Guidance regarding personal safety is provided. Guidelines for damage statistics and reporting are provided. Normative references are made to generic standards for lightning protection, low-voltage systems and high-voltage systems for machinery and installations and electromagnetic compatibility (EMC).

Categories: Energy
Origin: CSA
Close date: Nov 13, 2023
View moreView less
 

1.1 Facilities

These Guidelines and the CDG are intended to apply to CANDU nuclear power stations in Canada. However, the radionuclides and environmental pathways addressed make these Guidelines applicable to releases from many other nuclear facilities, including research reactors, radioisotope processing facilities, waste processing facilities such as incinerators, and power reactors other than those of CANDU design, subject to the limitations detailed in Clauses 1.2 to 1.8. Application to other types of facilities such as fuel fabrication plants and refineries is limited by the radionuclides considered here (see Clause 4.3).These Guidelines may be adapted to cover part of the needs of such facilities, but additional models or methodologies might be necessary for other parts. However, neither the radionuclides nor the models included in these Guidelines are complete enough to cover releases from sources such as uranium mines and mills, or permanent geologic disposal facilities. In addition, the pathways are incomplete for any facilities where extensive modelling of groundwater pathways is required.

1.2 Release paths

These Guidelines cover releases to the atmosphere and to surface water (both fresh and marine). They do not address releases to groundwater, although transfers from other media to groundwater wells and ponds are considered. Direct gamma irradiation from radioactivity inside the facility is not modelled because it does not involve a release.

1.3 Release duration

The methods specified in these Guidelines are designed for routine, continuous, low-level emissions. They also apply to periodic, short-term releases (see Clause 8.2), provided that

a)

b)

c)

d)

Where the requirement of Item d) is not met but the releases are known to occur at a particular time of day or year, these Guidelines apply only if the air (water) concentrations are calculated using the meteorological (hydrological) data in effect for that time.

Notes:

1)Where non-random releases are calculated using time-appropriate data, it might be possible to relax the conditions on the release frequencies.

2)Releases that do not meet these conditions can use another model, such as that specified in CSA N288.2 for atmospheric releases.

3)For some facilities, intermittent releases occur predictably as spikes on a continuous base release. Such releases can be considered part of routine emissions and included in the DRL without special treatment if the total activity released in intermittent form is less than approximately 30% of the total release from the facility. The 30% cut-off is considered a small fraction of the overall uncertainty of the DRL estimates.

1.4 Contaminants

These Guidelines apply to the radiation effects of radionuclides. They do not apply to chemicals or to the chemical toxicity of radionuclides.

1.5 Receptors

The model can be used to calculate doses or derive release limits for a representative person having the average characteristics of a group of individuals who, by reason of their location and habits, are likely to receive the highest exposures to a given radionuclide released from a particular source (see Clause 4.2). These Guidelines do not apply to nuclear energy workers (NEWs), or to non-NEWs working at a nuclear facility, who are assumed to be covered by on-site radiation protection programs. The DRLs calculated using the models specified in these Guidelines apply to human receptors only; however, the models can be used to support dose calculations for non-human biota.

1.6 Downwind distance of validity

These Guidelines are not applicable to receptors located close to a source affected by building-induced turbulence because the atmospheric dispersion model does not simulate the cavity that forms in the lee of the building. Because the cavity extends approximately three building heights downwind, these Guidelines apply only beyond this distance. Moreover, the dispersion model should be used with caution beyond an approximate distance of 20 km from the facility because the assumption of steady-state meteorological conditions implicit in the model becomes less valid at greater distances. This is not an issue in practice because the representative person is usually found closer to the facility than 20 km.

1.7 Site specificity

Local parameter values should be used wherever possible when applying models to a specific site. Where local values are not available, the default values given in these Guidelines for the region closest to the site of interest may be used. These regional values represent conditions at the main nuclear sites in Canada (i.e., Pickering/Darlington, Bruce, CRL, G-2, and Point Lepreau) but may be interpreted as default values for the regional areas of southern Ontario, western Ontario, eastern Ontario, Québec, and the Maritimes, respectively. Some items which make sites unique are: topography (e.g., escarpment, river valley, lake effect), proximity to water bodies, prevalent wind patterns, and surface roughness.

1.8 Level of complexity

1.8.1 Simpler approaches

The models specified in these Guidelines are comprehensive and in some cases include considerable detail. This level of complexity might not be warranted for all assessments. Less complex approaches, involving fewer pathways and/or less detail, might be appropriate under some circumstances. Any pathway that can be shown to not contribute significantly to the total dose may be neglected. In these cases, simpler models such as those described by the IAEA Safety Report Series No. 19 may be used, provided that justification for using a simpler approach is provided.

Note: For example, the following need not be considered:

a)radionuclides that are not released from the site of interest; and

b)pathways related to wells that are not used as a source of water by members of the public near the site.

1.8.2 Default transfer parameters

A simplified approach is available for application of these Guidelines without implementation of the models. Annex A lists default transfer parameters for each radionuclide for each pathway in the model, together with the assumptions made in calculating the values. If the assumptions hold for the application in question, these default values may be used to obtain estimates of the DRLs without implementing the model itself, as demonstrated in Annex B. This allows all of the models and parameter values in these Guidelines to be accessed in a simple way. Because conservative assumptions were made in calculating the default parameter values, the DRLs calculated using this approach will be more conservative than those obtained by implementing the model.

The default transfer parameters can also be applied to conduct an initial assessment, combined with a sensitivity analysis, to determine which pathways or radionuclides merit further efforts to reduce model uncertainty through the application of site-specific measurements (see CDG, Appendix J).

1.9 Terminology

In these Guidelines, “should” is used to express a recommendation or that which is advised but not required and “may” is used to express an option or that which is permissible within the limits of the Guidelines

Categories: Energy
Origin: CSA
Close date: Nov 13, 2023
View moreView less
 

1.1 Installations

Ces lignes directrices et l’OLG s’appliquent surtout aux centrales nucléaires CANDU au Canada. Les radionucléides et les voies de pénétration dans l’environnement dont elles traitent permettent toutefois de l’appliquer aux rejets de nombreuses autres installations nucléaires, notamment de réacteurs de recherche, d’installations de traitement des radio-isotopes, d’installations de traitement des déchets telles que les incinérateurs, ainsi que de réacteurs de puissance autres que CANDU, sous réserve des limites précisées aux articles 1.2 à 1.8. Les radionucléides dont il est question ici (voir l’article 4.3) limitent l’application à d’autres types d’installations comme les usines de fabrication de combustible et les raffineries. Ces lignes directrices peuvent être adaptées à certains besoins d’installations semblables, mais il faudra sans doute utiliser d’autres modèles ou méthodes pour les autres installations. Cependant, ni les radionucléides ni les modèles abordés dans ces lignes directrices ne sont suffisamment complets pour englober les rejets de sources comme les mines et les usines de concentration d’uranium, ou les installations de stockage géologique permanentes de gestion des déchets. De plus, les voies de pénétration sont incomplètes pour toutes installations où une modélisation complète des voies des eaux souterraines s’impose.

1.2 Voies des rejets

Les lignes directrices traitent des rejets dans l’atmosphère et dans les eaux de surface (eau douce et eau de mer). Elles ne portent pas sur les rejets dans les eaux souterraines, mais prennent en compte les transferts d’autres milieux vers les puits d’eaux souterraines et les étangs. L’irradiation gamma directe due à la radioactivité présente dans l’installation n’est pas modélisée parce qu’elle ne sous-entend pas un rejet.

1.3 Durée des rejets

Les méthodes décrites dans ces lignes directrices visent particulièrement les émissions de faible intensité courantes et continues. Elles s’appliquent également aux rejets périodiques de courte durée (voir l’article 8.2), dans la mesure où :

les rejets sont contrôlés et liés à une exploitation normale;

le taux de rejet est sensiblement le même d’un évènement à l’autre;

la durée totale des rejets aériens dépasse environ 1000 heures dans l’année; au moins un ou deux rejets dans l’eau se produisent pendant chaque mois de l’année; et

les rejets surviennent au hasard au fil du temps.

Si l’alinéa d) n’est pas respecté, mais que les rejets surviennent généralement à un moment donné de la journée ou de l’année, ces lignes directrices ne s’appliquent que si les concentrations dans l’air ou dans l’eau sont calculées à partir des données météorologiques ou hydrologiques en vigueur à ce moment-là.

Notes :

Si le calcul des rejets non aléatoires se fait à partir de données opportunes et pertinentes, il est alors possible d’assouplir les conditions quant à la fréquence des rejets.

Lorsque les rejets ne respectent pas ces conditions, il est possible d’utiliser un autre modèle, notamment celui que spécifie CSA N288.2 au sujet des rejets aériens.

Certaines installations produisent des rejets intermittents de façon prévisible comme des pointes dans un rejet continu. Il est possible de considérer ces rejets comme faisant partie des émissions courantes et incluses dans la LOD sans traitement spécial si l’activité nucléaire totale émise de façon intermittente est inférieure d’environ 30 % aux émissions totales de l’installation. Cette réduction de 30 % représente une petite fraction de l’incertitude globale des estimations de LOD.

1.4 Contaminants

Ces lignes directrices s’appliquent aux effets des rayonnements des radionucléides, et non pas aux produits chimiques ou à la toxicité chimique des radionucléides.

1.5 Récepteurs

Le modèle pourrait être utilisé pour calculer les doses ou les limites de rejet pour une personne représentative possédant les caractéristiques moyennes d’un groupe d’individus qui, en raison de leur lieu d’habitation et de leurs modes de vie, risquent d’être soumis aux expositions les plus élevées à un radionucléide donné émis par une source précise (voir l’article 4.2). Ces lignes directrices ne s’appliquent pas aux travailleurs du secteur nucléaire (TSN), ni aux personnes qui œuvrent dans une installation nucléaire sans être des travailleurs du secteur nucléaire, qui bénéficient de programmes de radioprotection sur place. Les LOD calculées à l’aide des modèles spécifiés dans les présentes lignes directrices s’appliquent uniquement aux récepteurs humains; toutefois, les modèles pourraient être utilisés à l’appui des calculs de dose pour les biotes non humains.

1.6 Validité de la distance sous le vent

Ces lignes directrices ne s’appliquent pas aux récepteurs situés à proximité d’une source soumise à la turbulence produite par un bâtiment, parce que le modèle de dispersion atmosphérique ne simule pas le creux qui se forme du côté sous le vent du bâtiment. Comme le creux s’étend sur environ trois hauteurs de bâtiment sous le vent, ces lignes directrices ne s’appliquent qu’au-delà de cette distance. En outre, au-delà d’une distance d’environ 20 km de l’installation, le modèle de dispersion devrait être utilisé avec précaution, car l’hypothèse de conditions météorologiques stables implicite dans le modèle devient moins valide à de plus grandes distances. Dans la pratique, ceci ne pose pas réellement un problème puisque la personne représentative se trouve habituellement à moins de 20 km de l’installation.

1.7 Spécificité du site

Les valeurs de paramètres locaux devraient être utilisées autant que possible lors de l’application de modèles à un site particulier. En l’absence de valeurs locales, les valeurs par défaut que fournissent ces lignes directrices pour la région située à proximité du site en question peuvent être utilisées. Ces valeurs régionales représentent les conditions propres aux principaux sites nucléaires au Canada (c.-à-d., Pickering/Darlington, Bruce, LCR, G-2 et Point Lepreau), mais elles peuvent être considérées comme des valeurs par défaut pour les régions du sud, de l’ouest et de l’est de l’Ontario, du Québec et des provinces maritimes respectivement. Voici quelques éléments qui rendent les sites uniques : topographie (p. ex., escarpement, vallée de la rivière, effet de lac), proximité avec les étendues d’eau, vents courants et rugosité de surface.

1.8 Niveau de complexité

1.8.1 Approches simplifiées

Les modèles décrits dans ces lignes directrices sont complets et comprennent, dans certains cas, une quantité considérable de détails. Un tel niveau de complexité ne convient pas nécessairement à toutes les évaluations. Des approches moins complexes, comptant un moins grand nombre de voies de pénétration et/ou de détails, pourraient convenir dans certaines circonstances. Toute voie de pénétration qui, selon toute évidence, contribue très peu à la dose totale peut être négligée. Des modèles simplifiés comme ceux que décrit le Rapport de sûreté série n° 19 de l’AIEA peuvent alors être utilisés, pourvu que l’utilisation d’une approche simplifiée soit justifiée.

Note : Il n’est pas nécessaire, par exemple, de prendre en compte les points suivants :

les radionucléides qui ne sont pas émis par le site en cause; et

les voies de pénétration liées à des puits qui ne constituent pas une source d’eau pour les membres du public demeurant à proximité du site.

1.8.2 Paramètres de transfert par défaut

Il existe une approche simplifiée permettant d’appliquer ces lignes directrices sans mise en œuvre des modèles. L’annexe A présente les paramètres de transfert par défaut pour chaque radionucléide de chaque voie de pénétration prévue dans le modèle, de même que les hypothèses adoptées au moment du calcul des valeurs. Si les hypothèses conviennent à l’application en question, ces valeurs par défaut peuvent servir à évaluer les LOD sans mettre en œuvre le modèle lui-même, comme le démontre l’annexe B. Cette mesure permet d’accéder sans problème à l’ensemble des modèles et des valeurs des paramètres mentionnés dans ces lignes directrices. Comme le calcul des valeurs des paramètres par défaut a permis l’établissement d’hypothèses conservatives, les valeurs de LOD calculées selon cette approche seront plus conservatives que celles obtenues à l’aide du modèle.

Les paramètres de transfert par défaut pourraient également être appliqués pour effectuer une évaluation initiale, combinée à une analyse de sensibilité, afin de déterminer les voies de transfert ou les radionucléides qui nécessitent d’autres efforts pour réduire l’incertitude du modèle au moyen de l’application de mesures propres au site (voir OLG : Appendice J).

1.9 Terminologie

Dans ces lignes directrices, le terme « devrait » indique une recommandation ou ce qu’il est conseillé mais non obligatoire de faire; et « peut » indique une possibilité ou ce qu’il est permis de faire.

Categories: Energy
Origin: CSA
Close date: Nov 20, 2023
View moreView less
 

1.1 Inclusions

This Code applies to

a) the installation, servicing, and repair of propane fuel system components and containers on motor vehicles for the provision of motive power; and

b) the installation of containers on motor vehicles such as recreational vehicles, outdoor food service units, and wash-mobiles when propane is to be used for fuel purposes (other than motive power).

Note: “Motor vehicles” include cases where propane is used as an engine fuel in other than highway vehicles, such as ice resurfacing machines, lift trucks, lawnmowers, etc.

1.2 Exclusions

This Code does not apply to

a) vehicles qualified under the Canada Motor Vehicle Safety Regulations;*

b) propane used on boats; and

c) the installation of appliances.

* For confirmation of CMVSS compliance, you can contact the vehicle manufacturer.

1.3 Fuel Composition

Where the term “propane” is used, the requirements of this Code include, and apply equally to, any material that is composed predominantly of any of the following hydrocarbons or a mixture of them: propane, propylene, butane (normal butane or isobutane), and butylenes.

1.4 No Guarantee

This Code and any Standards referenced in it do not make or imply any assurance or guarantee with respect to the life expectancy, durability, or operating performance of equipment and materials referenced in the Code.

1.5 Units of measure

The values shown are in SI (metric) units. The Code contains yard/pound equivalents so the code can be used in these units also. The conversion of yard/pound to SI is in accordance with Table F.1. All pressures are gauge unless otherwise noted.

1.6 Terminology

In this Code, shall” is used to express a requirement, i.e., a provision that the user is obliged to satisfy in order to comply with the Code; “should” is used to express a recommendation or that which is advised but not required; and “may” is used to express an option or that which is permissible within the limits of the Code.

Notes accompanying clauses do not include requirements or alternative requirements; the purpose of a note accompanying a clause is to separate from the text explanatory or informative material.

Notes to tables and figures are considered part of the table or figure and may be written as requirements.

Annexes are designated normative (mandatory) or informative (non-mandatory) to define their application.