Draft Details
- Technical requirements for in-service evaluati...
- Legal Notice for Standards
- Preface
- 0 Introduction
- + 1 Scope
- 1.1
- 1.2
- 1.3
- 1.4
- 2 Reference publications
- + 3 Definitions, symbols, and abbreviations
- 3.1 Definitions
- 3.2 Symbols and abbreviations
- + 4 General requirements
- 4.1 Scope
- + 4.2 Evaluation of in-service inspection results...
- + 4.2.1 Evaluation of flaws detected by in-servic...
- 4.2.1.1 Evaluation of flaws
- 4.2.1.2 Evaluation of pressure tube repair
- + 4.2.2 Evaluation of pressure tube to calandria ...
- 4.2.2.1 General
- 4.2.2.2 Evaluation of pressure tube left in con...
- 4.2.2.3 Evaluation of pressure tube removed fro...
- + 4.3 Assessment of reactor core
- 4.3.1 Applicability
- + 4.3.2 Assessment of reactor core for flaws
- 4.3.2.1 General
- 4.3.2.2 Evaluation of service conditions for pr...
- 4.3.2.3 Assessment of degradation mechanisms re...
- 4.3.2.4 Evaluation of leak-before-break
- 4.3.3 Evaluation of reactor core for pressure t...
- 4.4 Evaluation of material surveillance measure...
- + 4.5 Requirements of evaluations
- + 4.5.1 Evaluation methods
- 4.5.1.1
- 4.5.1.2
- 4.5.1.3
- 4.5.1.4
- 4.5.2 Inspection uncertainty
- 4.5.3 Hydrogen equivalent concentration
- + 4.5.4 Material properties
- 4.5.4.1
- 4.5.4.2
- + 4.5.5 Loading conditions
- 4.5.5.1
- 4.5.5.2
- 4.5.5.3
- 4.6 Operating conditions
- 4.7 Records and notification
- + 5 Evaluation of pressure tube flaws
- 5.1 General
- + 5.2 Flaw characterization
- 5.2.1 General
- 5.2.2 Characterization of planar and laminar fl...
- + 5.2.3 Characterization of volumetric flaws
- 5.2.3.1
- 5.2.3.2
- 5.2.3.3
- + 5.3 Evaluation of planar and laminar flaws
- 5.3.1 General
- 5.3.2 Flaw growth evaluation
- 5.3.3 Fracture initiation evaluation
- 5.3.4 Plastic collapse evaluation
- + 5.4 Evaluation of volumetric flaws
- 5.4.1 General
- + 5.4.2 Fatigue crack initiation evaluation
- 5.4.2.1 General
- 5.4.2.2 Calculation of usage factor
- 5.4.2.3 Evaluation of cumulative usage factor
- + 5.4.3 Hydrided region overload and delayed hydr...
- 5.4.3.1 General
- 5.4.3.2 Peak stress or explicit process-zone ev...
- 5.4.3.3 Peak stress or explicit process-zone ev...
- 5.4.3.4 Threshold peak stress evaluation
- + 5.4.3.5 Explicit process-zone evaluation
- 5.4.3.5.1 General
- 5.4.3.5.2 Flaw-tip hydride ratcheting condition...
- 5.4.3.5.3 Flaw-tip hydride non-ratcheting condi...
- 5.4.3.6 Evaluation of hydrided region overload ...
- 5.4.4 Plastic collapse evaluation
- + 6 Evaluation of pressure tube to calandria tube...
- 6.1 General
- + 6.2 Classification of operating conditions
- 6.2.1
- 6.2.2
- 6.2.3
- + 6.3 Evaluation of pressure tubes left in contac...
- 6.3.1 General
- 6.3.2 Evaluation for Sustained Operating Condit...
- + 6.3.3 Evaluation for Limited Operating Conditio...
- 6.3.3.1 General
- 6.3.3.2 Evaluation for blister formation thresh...
- 6.3.3.3 Evaluation for blister growth for Limit...
- + 6.4 Evaluation of pressure tubes removed from c...
- 6.4.1 General
- + 6.4.2 Evaluation for Sustained Operating Condit...
- 6.4.2.1 General
- 6.4.2.2 Evaluation for blister formation thresh...
- 6.4.2.3 Evaluation for blister growth for Susta...
- + 6.4.3 Evaluation for Limited Operating Conditio...
- 6.4.3.1 General
- 6.4.3.2 Evaluation for blister formation thresh...
- 6.4.3.3 Evaluation for blister growth for Limit...
- + 6.5 Evaluation of annulus spacer movement
- 6.5.1 General
- 6.5.2 Condition monitoring assessment
- + 6.5.3 Operational assessment
- 6.5.3.1 Operational assessment — Annulus spacer...
- 6.5.3.2 Operational assessment — Re-inspection ...
- + 7 Assessment of reactor core
- + 7.1 General
- 7.1.1
- 7.1.2
- 7.1.3
- 7.1.4
- 7.1.5
- 7.1.6
- + 7.2 Evaluation of service conditions for protec...
- 7.2.1 General
- 7.2.2 Deterministic evaluation
- 7.2.3 Probabilistic evaluation
- + 7.3 Assessment of flaws and pressure tube to ca...
- + 7.3.1 General
- 7.3.1.1
- 7.3.1.2
- + 7.3.2 Assessment of degradation mechanisms rela...
- 7.3.2.1 General
- 7.3.2.2 Deterministic evaluation
- 7.3.2.3 Probabilistic evaluation
- + 7.3.3 Assessment of pressure tube to calandria ...
- 7.3.3.1 General
- 7.3.3.2 Deterministic evaluation
- 7.3.3.3 Probabilistic evaluation
- + 7.4 Evaluation of leak-before-break
- 7.4.1 General
- 7.4.2 Deterministic evaluation
- + 7.4.3 Probabilistic evaluation
- 7.4.3.1 General
- 7.4.3.2 Probabilistic leak-before-break evaluat...
- 7.4.3.3 Integrated probabilistic core evaluatio...
- + 8 Evaluation of material surveillance measureme...
- 8.1 General
- 8.2 Evaluation of hydrogen equivalent concentra...
- 8.3 Evaluation of fracture toughness
- 8.4 Evaluation of delayed hydride cracking grow...
- 8.5 Evaluation of threshold stress intensity fa...
- Table 1 Flaw types within the scope of this St...
- Table 2 Required safety factors against fractu...
- Table 3 Lower-bound threshold peak flaw-tip st...
- Table 4 Required safety factors on pressure to...
- Table 5 Distribution of maximum allowable hydr...
- Table 6 Hydride non-ratcheting factors
- Table 7 Threshold and allowable probabilities ...
- Figure 1 Flow chart for evaluation of in-servi...
- Figure 2 Planar flaw in a pressure tube
- Figure 3 Illustration of planar dimensions of ...
- Figure 4 Illustration of planar dimensions of ...
- Figure 5 Bearing pad fretting flaw in a pressu...
- Figure 6 Debris fretting flaw in a pressure tu...
- Figure 7 Illustration of a root radius of axia...
- Figure 8 Illustration of a root radius of axia...
- Figure 9 Flow chart for evaluation of planar a...
- Figure 10 Flow chart for evaluation of volumet...
- Figure 11 Flow chart for delayed hydride crack...
- Figure 12 Illustration of a hydrided region/pr...
- Figure 13 Evaluation of pressure tubes left in...
- Figure 14 Evaluation of pressure tubes removed...
- Figure 15 Illustrative flow chart for evaluati...
- Figure 16 Illustrative flow chart for evaluati...
- Figure 17 Illustrative flow chart for evaluati...
- Figure 18 Illustrative flow chart for evaluati...
- Figure 19 Flow chart of the evaluation of annu...
- + Annex A (informative)
- + A.1 Introduction
- A.1.1 General
- A.1.2 Summary of the evaluation procedure for p...
- A.1.3 Summary of the evaluation procedure for v...
- A.1.4 Symbols and abbreviations
- + A.2 Flaw geometry characterization
- A.2.1 General
- + A.2.2 Geometry characterization of planar and l...
- A.2.2.1 General
- + A.2.2.2 Surface planar flaws
- A.2.2.2.1 General
- A.2.2.2.2 Flaw components
- + A.2.2.2.3 Multiple surface planar flaws
- A.2.2.2.3.1
- + A.2.2.2.4 Planar flaw dimensions along axis of ...
- A.2.2.2.4.1
- A.2.2.2.4.2
- A.2.2.2.4.3
- A.2.2.2.4.4
- A.2.2.3 Sub-surface planar or laminar flaws
- + A.2.3 Geometry characterization of volumetric f...
- A.2.3.1 General
- + A.2.3.2 Flaw planar dimensions
- A.2.3.2.1
- A.2.3.2.2
- A.2.3.2.3
- A.2.3.2.4
- + A.2.3.3 Flaw volumetric dimensions
- A.2.3.3.1 General
- + A.2.3.3.2 Flaw volumetric dimensions along prin...
- A.2.3.3.2.1
- A.2.3.3.2.2
- A.2.3.3.2.3
- A.2.3.3.2.4
- A.2.3.3.2.5
- A.2.3.3.2.6
- A.2.3.3.2.7
- + A.2.3.3.3 Flaw volumetric dimensions along majo...
- A.2.3.3.3.1
- A.2.3.3.3.2
- A.2.3.3.3.3
- A.2.3.3.3.4
- A.2.3.3.3.5
- A.2.3.3.3.6
- A.2.3.3.3.7
- A.2.3.3.3.8
- + A.3 Material properties and derived quantities
- A.3.1 General
- A.3.2 Fracture toughness for fracture initiatio...
- A.3.3 Fatigue crack growth rate
- A.3.4 Yield stress and ultimate tensile strengt...
- A.3.5 Terminal solid solubility limits
- A.3.6 Deuterium ingressrate of change
- A.3.7 Threshold stress intensity factor for DHC...
- A.3.8 Delayed hydride cracking growth rate
- A.3.9 Fatigue crack initiation evaluation curve...
- A.3.10 Threshold peak stress for DHC initiation...
- + A.4 Calculation of pressure tube dimensions and...
- A.4.1 General
- + A.4.2 Time variation of pressure tube dimension...
- A.4.2.1 General
- + A.4.2.2 Pressure tube wall thickness
- A.4.2.2.1
- A.4.2.2.2
- A.4.2.2.3
- A.4.2.2.4
- A.4.2.2.5
- + A.4.2.3 Pressure tube inner radius
- A.4.2.3.1
- A.4.2.3.2
- A.4.2.3.3
- A.4.2.3.4
- A.4.2.3.5
- A.4.2.3.6
- + A.4.3 Applied loads
- + A.4.3.1 Loading conditions
- A.4.3.1.1 General
- A.4.3.1.2 Loading and stress classification
- + A.4.3.1.3 Transient load cycles
- A.4.3.1.3.1
- A.4.3.1.3.2
- A.4.3.1.3.3
- + A.4.3.2 Calculation of applied loads
- A.4.3.2.1
- A.4.3.2.2
- A.4.3.2.3
- A.4.3.2.4
- A.4.3.2.5
- A.4.3.2.6
- + A.4.4 Calculation of nominal hoop stresses
- A.4.4.1
- A.4.4.2
- A.4.4.3
- A.4.4.4
- + A.4.5 Calculation of nominal axial stresses
- A.4.5.1
- A.4.5.2
- A.4.5.3
- A.4.5.4
- A.4.5.5
- A.4.5.6
- A.4.5.7
- A.4.5.8
- A.4.6 Residual stresses
- + A.5 Evaluation of planar and laminar flaws
- A.5.1 General
- + A.5.2 Calculation of stress intensity factor
- A.5.2.1 General
- + A.5.2.2 Axial flaw
- A.5.2.2.1 General
- A.5.2.2.2 Stress intensity factor
- A.5.2.2.3 Plastic-zone correction
- + A.5.2.2.4 Geometry correction factors for an ax...
- A.5.2.2.4.1
- A.5.2.2.4.2
- A.5.2.2.4.3
- A.5.2.2.4.4
- + A.5.2.2.5 Geometry correction factors for an ax...
- A.5.2.2.5.1
- A.5.2.2.5.2
- A.5.2.2.5.3
- + A.5.2.3 Circumferential flaw
- A.5.2.3.1 General
- A.5.2.3.2 Stress intensity factor
- A.5.2.3.3 Plastic-zone correction
- + A.5.2.3.4 Geometry correction factors for a cir...
- A.5.2.3.4.1
- A.5.2.3.4.2
- A.5.2.3.4.3
- A.5.2.3.4.4
- A.5.2.3.5 Geometry correction factor for a circ...
- + A.5.3 Flaw growth
- A.5.3.1 General
- + A.5.3.2 TTSSD temperature
- A.5.3.2.1
- A.5.3.2.2
- A.5.3.2.3
- + A.5.3.3 Evaluation of length LDHC of initiation...
- A.5.3.3.1 General
- A.5.3.3.2 Flaw profile
- A.5.3.3.3 Length LDHC
- A.5.3.3.4 Evaluation of length LDHC for a semi-...
- A.5.3.3.5 Evaluation of length LDHC for any fla...
- + A.5.3.4 Flaw growth due to fatigue and DHC
- + A.5.3.4.1 Flaw growth evaluation procedure
- A.5.3.4.1.1
- A.5.3.4.1.2
- A.5.3.4.1.3
- A.5.3.4.1.4
- A.5.3.4.1.5
- + A.5.3.4.2 Fatigue crack growth
- A.5.3.4.2.1
- A.5.3.4.2.2
- A.5.3.4.2.3
- A.5.3.4.2.4
- A.5.3.4.2.5
- A.5.3.4.2.6
- + A.5.3.4.3 DHC crack growth during sustained con...
- A.5.3.4.3.1
- A.5.3.4.3.2
- A.5.3.4.3.3
- A.5.3.4.3.4
- A.5.3.4.3.5
- + A.5.3.4.4 DHC crack growth during a cool-down t...
- A.5.3.4.4.1
- A.5.3.4.4.2
- A.5.3.4.4.3
- A.5.3.4.4.4
- A.5.3.4.4.5
- A.5.3.4.4.6
- A.5.3.4.4.7
- + A.5.4 Fracture initiation evaluation
- A.5.4.1 General
- A.5.4.2 Axial flaw
- A.5.4.3 Circumferential flaw
- + A.5.5 Plastic collapse evaluation
- A.5.5.1 General
- + A.5.5.2 Axial flaw
- A.5.5.2.1
- A.5.5.2.2
- A.5.5.2.3
- + A.5.5.3 Circumferential flaw
- A.5.5.3.1 General
- + A.5.5.3.2 Plastic collapse evaluation for prima...
- A.5.5.3.2.1
- A.5.5.3.2.2
- A.5.5.3.2.3
- + A.5.5.3.3 Plastic collapse evaluation for prima...
- A.5.5.3.3.1
- A.5.5.3.3.2
- A.5.5.3.3.3
- A.5.5.3.4 Plastic collapse evaluation in accord...
- + A.6 Evaluation of volumetric flaws
- A.6.1 General
- + A.6.2 Fatigue crack initiation evaluation
- A.6.2.1 General
- A.6.2.2 Fatigue crack initiation evaluation cur...
- + A.6.2.3 Alternating peak stress
- A.6.2.3.1 General
- A.6.2.3.2 Alternating peak stress based on stre...
- + A.6.2.3.3 Alternating peak stress based on elas...
- A.6.2.3.3.1 General
- A.6.2.3.3.2 Elastic stress concentration factor...
- A.6.2.3.3.3 Elastic stress concentration factor...
- + A.6.2.4 Cumulative usage factor evaluation
- A.6.2.4.1
- A.6.2.4.2
- A.6.2.4.3
- A.6.2.4.4
- A.6.2.4.5
- A.6.2.4.6
- A.6.2.4.7
- + A.6.3 DHC and hydrided region overload crack in...
- + A.6.3.1 Overview of DHC and hydrided region ove...
- + A.6.3.1.1 General
- A.6.3.1.1.1
- A.6.3.1.1.2
- A.6.3.1.1.3
- A.6.3.1.1.4
- A.6.3.1.1.5
- A.6.3.1.1.6
- A.6.3.1.1.7
- A.6.3.1.1.8
- A.6.3.1.1.9
- A.6.3.1.1.10
- A.6.3.1.2 Peak stress or explicit process-zone ...
- A.6.3.1.3 Peak stress or explicit process-zone ...
- + A.6.3.2 Peak flaw-tip stress calculation
- A.6.3.2.1 General
- A.6.3.2.2 Elastic peak flaw-tip stress calculat...
- A.6.3.2.3 Elastic peak flaw-tip stress calculat...
- + A.6.3.2.4 Peak flaw-tip stress calculation base...
- A.6.3.2.4.1
- A.6.3.2.4.2
- A.6.3.2.4.3
- + A.6.3.3 Evaluation of flaw-tip hydride precipit...
- A.6.3.3.1 General
- + A.6.3.3.2 Evaluation of flaw-tip hydride dissol...
- A.6.3.3.2.1
- A.6.3.3.2.2
- A.6.3.3.2.3
- + A.6.3.3.3 Evaluation of flaw-tip hydride precip...
- A.6.3.3.3.1
- A.6.3.3.3.2
- A.6.3.3.3.3
- + A.6.3.3.4 Evaluation of flaw-tip hydride dissol...
- A.6.3.3.4.1
- A.6.3.3.4.2
- A.6.3.3.4.3
- + A.6.3.4 DHC initiation evaluation based on thre...
- A.6.3.4.1 General
- A.6.3.4.2 Bearing pad fretting flaw
- A.6.3.4.3 Debris fretting flaw
- A.6.3.4.4 Peak principal flaw-tip stress
- + A.6.3.4.5 Acceptance criteria
- A.6.3.4.5.1
- A.6.3.4.5.2
- + A.6.3.5 DHC initiation evaluation based on expl...
- A.6.3.5.1 General
- + A.6.3.5.2 Flaw-tip stress distribution
- A.6.3.5.2.1 General
- A.6.3.5.2.2 Generic elastic flaw-tip stress dis...
- A.6.3.5.2.3 Flaw-tip stress distribution based ...
- + A.6.3.5.3 DHC initiation evaluation based on en...
- A.6.3.5.3.1 Procedure for flaw-tip hydride ratc...
- A.6.3.5.3.2 Cubic polynomial stress distributio...
- A.6.3.5.3.3 Process-zone length
- A.6.3.5.3.4 Process-zone displacement
- A.6.3.5.3.5 Procedure for flaw-tip hydride non-...
- + A.6.3.5.4 Threshold peak stress based on engine...
- A.6.3.5.4.1
- A.6.3.5.4.2
- A.6.3.5.4.3
- A.6.3.5.4.4
- A.6.3.5.4.5
- A.6.3.5.4.6
- A.6.3.5.4.7
- A.6.3.5.4.8
- A.6.3.5.4.9
- + A.6.3.5.5 DHC initiation evaluation based on pr...
- A.6.3.5.5.1 Procedure for flaw-tip hydride ratc...
- A.6.3.5.5.2 Weight functions for cracks at blun...
- A.6.3.5.5.3 Process-zone length
- A.6.3.5.5.4 Process-zone displacement
- A.6.3.5.5.5 Validity limits on weight functions...
- A.6.3.5.5.6 Application to V-notches with inter...
- A.6.3.5.5.7 Procedure for flaw-tip hydride non-...
- A.6.3.5.6 Evaluation of secondary flaw signific...
- + A.6.3.6 Evaluation of hydrided region overload ...
- A.6.3.6.1 General
- A.6.3.6.2 Assessing hydrided region overload cr...
- + A.6.3.6.3 Assessing hydrided region overload cr...
- A.6.3.6.3.1 No flaw-tip hydride exists at the s...
- A.6.3.6.3.2 Flaw-tip hydride exists at the star...
- A.6.4 Plastic collapse evaluation
- Table A.1 Classification of stresses
- Table A.2
- Influence coefficients Gj for the stress inten...
- Table A.3 Geometry factor Fax for the stress i...
- Table A.4 Influence coefficients Gj for the st...
- Table A.5 Geometry factor Fcr for the stress i...
- Table A.6 Coefficients used in process-zone mo...
- Table A.7 Notch flank angle factors used in pr...
- Table A.8 Non-dimensional constant coefficient...
- Table A.9 Coefficients for Mode II displacemen...
- Table A.10 Validity limits of weight functions...
- Figure A.1 Flow chart for flaw characterizatio...
- Figure A.2 Planar flaw in a pressure tube
- Figure A.3 Illustration of planar dimensions o...
- Figure A.4 Illustration of planar dimensions o...
- Figure A.5 Flaw proximity evaluation of planar...
- Figure A.6 Bearing pad fretting flaw in a pres...
- Figure A.7 Bearing pad fretting flaw at rolled...
- Figure A.8 Debris fretting flaw in a pressure ...
- Figure A.9 Determination of planar dimensions ...
- Figure A.10 Flaw proximity evaluation of volum...
- Figure A.11 Example of bounding dimensions of ...
- Figure A.12 Example of bounding dimensions of ...
- Figure A.13 Example of bounding dimensions of ...
- Figure A.14 Determination of volumetric dimens...
- Figure A.15 Illustration of a secondary flaw o...
- Figure A.16 Illustration of a root radius ρ fo...
- Figure A.17 Illustration of a root radius ρ fo...
- Figure A.18 Example of bounding dimensions of ...
- Figure A.19 Example of bounding dimensions of ...
- Figure A.20 Example of bounding dimensions of ...
- Figure A.21 Example of bounding dimensions of ...
- Figure A.22 Characterization of volumetric fla...
- Figure A.23 Schematic illustration of determin...
- Figure A.24 Schematic illustration of determin...
- Figure A.25 Schematic illustration of determin...
- Figure A.26 Illustration of sectioning a react...
- Figure A.27 Illustrative flow chart for DHC in...
- Figure A.28 Illustration of method of superpos...
- Figure A.29 Illustration of a hydrided region/...
- Figure A.30 Characterization of flaw in local ...
- Figure A.31 Example of bounding dimensions of ...
- Figure A.32 Example of bounding dimensions of ...
- Figure A.33 Illustrative flow chart for cooldo...
- Figure A.34 Illustrative flow chart for non-co...
- Figure A.35 Example sequencing of Service Leve...
- Figure A.36 Flow Chart of Process‐Zone Evaluat...
- + Annex B (informative)
- + B.1 Introduction
- B.1.1 General
- B.1.2 Summary of evaluation procedures
- B.1.3 Symbols
- + B.2 Evaluation procedures
- + B.2.1 Classification of operating conditions
- B.2.1.1
- B.2.1.2
- B.2.1.3
- + B.2.2 Evaluation of pressure tubes left in cont...
- B.2.2.1 General
- + B.2.2.2 Evaluation for Sustained Operating Cond...
- B.2.2.2.1
- B.2.2.2.2
- B.2.2.2.3
- B.2.2.2.4
- B.2.2.2.5
- B.2.2.2.6
- + B.2.2.3 Evaluation for Limited Operating Condit...
- B.2.2.3.1 General
- B.2.2.3.2 Evaluation for blister formation thre...
- + B.2.2.3.3 Evaluation for blister growth for Lim...
- B.2.2.3.3.1
- B.2.2.3.3.2
- B.2.2.3.3.3
- B.2.2.3.3.4
- B.2.2.3.3.5
- + B.2.3 Evaluation of pressure tubes removed from...
- B.2.3.1 General
- + B.2.3.2 Evaluation for Sustained Operating Cond...
- B.2.3.2.1 General
- B.2.3.2.2 Evaluation for blister formation thre...
- B.2.3.2.3 Evaluation for blister growth for Sus...
- + B.2.3.3 Evaluation for Limited Operating Condit...
- B.2.3.3.1 General
- B.2.3.3.2 Evaluation for blister formation thre...
- B.2.3.3.3 Evaluation for blister growth for Lim...
- + Annex C (informative)
- + C.1 Introduction
- C.1.1 General
- C.1.2 Summary of evaluation procedures
- C.1.3 Symbols and abbreviations
- + C.2 Evaluation of service conditions for protec...
- C.2.1 General
- + C.2.2 Deterministic method
- C.2.2.1 General
- + C.2.2.2 Postulated flaw
- C.2.2.2.1 General
- + C.2.2.2.2 Postulated flaw type
- C.2.2.2.2.1
- C.2.2.2.2.2
- C.2.2.2.2.3
- + C.2.2.2.3 Postulated flaw size
- C.2.2.2.3.1
- C.2.2.2.3.2
- C.2.2.2.3.3
- + C.2.2.3 Evaluation of postulated flaw stability...
- C.2.2.3.1 Flaw stability line
- + C.2.2.3.2 Pressure at onset of flaw instability...
- C.2.2.3.2.1 General
- C.2.2.3.2.2 Postulated part-through-wall flaw
- C.2.2.3.2.3 Postulated through-wall flaw
- + C.2.3 Probabilistic method
- C.2.3.1 General
- + C.2.3.2 Postulated flaw
- C.2.3.2.1 General
- C.2.3.2.2 Postulated flaw type
- + C.2.3.2.3 Postulated flaw size
- C.2.3.2.3.1
- C.2.3.2.3.2
- C.2.3.2.3.3
- + C.2.3.3 Evaluation of postulated flaw stability...
- C.2.3.3.1 Flaw stability line
- + C.2.3.3.2 Pressure at onset of flaw instability...
- C.2.3.3.2.1 General
- C.2.3.3.2.2 Postulated part-through-wall flaw
- C.2.3.3.2.3 Postulated through-wall flaw
- C.2.4 Evaluation criteria
- + C.3 Assessment of degradation mechanisms in the...
- C.3.1 General
- C.3.2 Bounding pressure tube analysis for asses...
- + C.3.3 Probabilistic reactor core assessment
- + C.3.3.1 Evaluation of failure frequency
- C.3.3.1.1 General
- C.3.3.1.2 Maximum allowable failure frequency
- C.3.3.1.23 Calculated failure frequency from a ...
- C.3.3.1.43 Calculated failure frequency from al...
- + C.3.3.2 Probabilistic core assessment of failur...
- C.3.3.2.1 General
- + C.3.3.2.2 Probabilistic core assessment for pre...
- C.3.3.2.2.1 General
- C.3.3.2.2.2 Input variables
- C.3.3.2.2.3 Core simulation and evaluation proc...
- C.3.3.2.3 Probabilistic core assessment for pre...
- + C.4 Evaluation procedures for leak-before-break...
- C.4.1 General
- + C.4.2 Deterministic method for LBB
- C.4.2.1 General
- + C.4.2.2 Input and calculated quantities for LBB...
- C.4.2.2.1 General
- C.4.2.2.2 Maximum crack length at penetration (...
- C.4.2.2.3 Axial delayed hydride cracking growth...
- C.4.2.2.4 Critical crack length
- C.4.2.2.5 Leak rate equation
- C.4.2.2.6 Station response to moisture in AGS
- C.4.2.2.7 Calculated length of a growing crack
- C.4.2.3 Sequence of events for deterministic LB...
- + C.4.3 Probabilistic method for LBB
- C.4.3.1 General
- C.4.3.2 Probabilistic LBB evaluation based on p...
- C.4.3.3 Integrated probabilistic core evaluatio...
- + C.5 Estimation of probability of observing a su...
- C.5.1 General
- C.5.2 Evaluation of fracture toughness
- C.5.3 Evaluation of delayed hydride cracking gr...
- C.5.4 Evaluation of threshold stress intensity ...
- Figure C.1 Flow chart summarizing the relation...
- Figure C.2 Flow chart summarizing the relation...
- Figure C.3 Illustrative example of flaw stabil...
- + Annex D (informative)
- + D.1 Introduction
- D.1.1 General
- D.1.2 Summary of material properties and derive...
- + D.2 Terminal solid solubility (TSS)
- D.2.1 General
- D.2.2 Terminal solid solubility for hydrogen di...
- D.2.3 Terminal solid solubility for hydrogen pr...
- + D.2.4 Hydrogen concentration for DHC initiation...
- D.2.4.1 Cooling with isothermal hold
- D.2.4.2 Continuous cooling
- + D.3 Mechanical properties
- D.3.1 General
- D.3.2 Unirradiated material yield stress and ul...
- D.3.3 Partially irradiated material yield stres...
- + D.3.4 Fully irradiated material yield stress an...
- D.3.4.1 General
- D.3.4.2 Axial lower-bound properties
- D.3.4.3 Transverse lower-bound properties
- D.3.4.4 Validity limits
- D.3.5 Material flow stress
- D.3.6 Elastic modulus and Poisson’s ratio
- + D.4 Fatigue crack initiation
- D.4.1 General
- + D.4.2 Fatigue crack initiation curves for axial...
- D.4.2.1 Deterministic fatigue crack initiation ...
- + D.4.2.2 Interim statistically based fatigue cra...
- D.4.2.2.1 Mean predicted load cycles to fatigue...
- D.4.2.2.2 Full multi-variable prediction bounds...
- D.4.2.2.3 Validity limits
- D.4.3 Fatigue crack initiation curve for circum...
- + D.5 Crack initiation from hydrided regions
- D.5.1 DHC initiation at a planar surface
- D.5.2 Critical process-zone displacement for DH...
- + D.5.3 Threshold peak stress for DHC initiation ...
- D.5.3.1 Lower-bound threshold peak stress for D...
- + D.5.3.2 Closed-form engineering relation for th...
- D.5.3.2.1 Threshold peak stress under flaw-tip ...
- D.5.3.2.2 Threshold peak stress under flaw-tip ...
- D.5.3.2.3 Validity limits
- + D.5.4 Critical elastic peak stress for crack in...
- + D.5.4.1 Best-estimate prediction of critical el...
- D.5.4.1.1 Mean predicted critical elastic peak ...
- D.5.4.1.2 Best-estimate prediction at elevated ...
- + D.5.4.2 Prediction bounds on critical elastic p...
- D.5.4.2.1 Prediction bounds at room temperature...
- D.5.4.1 Mean predicted critical elastic peak st...
- D.5.4.2 Engineering prediction bounds on critic...
- D.5.4.3 Full multi-variable prediction bounds o...
- D.5.4.4 Validity limits
- + D.6 Threshold stress intensity factor for DHC
- D.6.1 General
- D.6.2 Radial-axial threshold stress intensity f...
- D.6.3 Radial-transverse threshold stress intens...
- D.6.4 Threshold stress intensity factor versus ...
- + D.7 Hydride blister formation and growth
- D.7.1 General
- D.7.2 Blister formation
- D.7.3 Blister growth
- D.7.4 Maximum allowable equivalent blister dept...
- + D.8 Fracture initiation toughness
- D.8.1 General
- D.8.2 Radial-axial fracture initiation toughnes...
- D.8.3 Radial-transverse fracture initiation tou...
- D.9 Fatigue crack growth rate
- + D.10 Delayed hydride cracking (DHC) growth rate...
- D.10.1 General
- + D.10.2 Radial crack growth rate, Vr
- + D.10.2.1 Calculation procedures
- D.10.2.1.1 Mean DHC growth rate
- D.10.2.1.2 Engineering prediction bounds on DHC...
- D.10.2.1.3 General prediction bounds on DHC gro...
- D.10.2.2 Validity limits
- + D.10.3 Axial crack growth rate, Va
- + D.10.3.1 Calculation procedures
- D.10.3.1.1 Best-estimate prediction of DHC grow...
- D.10.3.1.2 Engineering prediction bounds on DHC...
- D.10.3.1.3 General prediction bounds on DHC gro...
- + D.10.3.2 Validity limits on explanatory variabl...
- D.10.3.1.1 Mean DHC growth rate
- D.10.3.1.2 Engineering bounds on DHC growth rat...
- D.10.3.1.3 General bounds on DHC growth rate
- D.10.3.2 Validity limits
- + D.11 Maximum crack length at penetration
- D.11.1 General
- D.11.2 Fuel bundle bearing pad fretting flaws
- D.11.3 Debris fretting flaws
- D.11.4 Crevice corrosion flaws and scores
- D.12 Leak rate
- + D.13 Critical crack length
- D.13.1 General
- + D.13.2 Interim fracture toughness for axial thr...
- + D.13.2.1 Calculation procedure
- D.13.2.2 Fracture toughness for levels of Heq o...
- D.13.2.2.1 Lower-bound fracture toughness
- D.13.2.2.2 Statistically based fracture toughne...
- D.13.2.2.3 Lower 90th percentile of fracture to...
- + D.13.2.3 Fracture toughness for temperatures be...
- + D.13.2.3.1 Applicability
- D.13.2.3.1.1
- D.13.2.3.1.2
- D.13.2.3.1.3
- + D.13.2.3.2 Statistically based fracture toughne...
- D.13.2.3.2.1 General
- D.13.2.3.2.2 Mean predicted fracture toughness
- D.13.2.3.2.3 Engineering prediction bounds on f...
- D.13.2.3.2.4 Full multi-variable prediction bou...
- D.13.2.3.3 Lower 97.5th percentile of fracture ...
- D.13.2.3.4 Lower 90th percentile of fracture to...
- D.13.2.4 Effect of irradiation
- + D.13.3 Instability of axial through-wall crack
- D.13.3.1 General
- D.13.3.2 Calculation of critical crack length
- D.13.3.3 Calculation of critical hoop stress
- Table D.1 Summary of material properties and d...
- Table D.2 Summary of applicable tables and equ...
- Table D.3 Lower-bound axial tensile properties...
- Table D.4 Lower-bound transverse tensile prope...
- Table D.5 Transverse elastic modulus and Poiss...
- Table D.6 Statistically based fatigue crack in...
- Table D.7 Tabulated fatigue crack initiation e...
- Table D.8 Lower-bound threshold peak flaw-tip ...
- Table D.9 Parameters C1, C2, C3, Cβ, Cβc, and ...
- Table D.10 Threshold elastic peak stress for c...
- Table D.10A Critical elastic peak stress for c...
- Table D.10B Critical elastic peak stress for c...
- Table D.10C Critical elastic peak stress for c...
- Table D.11 Blister formation thresholds for Br...
- Table D.12 Blister formation thresholds for Br...
- Table D.13 Blister formation thresholds for Pi...
- Table D.14 Blister formation thresholds for Pi...
- Table D.15 Blister formation thresholds for Da...
- Table D.16 Blister growth rates for Bruce NGS ...
- Table D.17 Blister growth rates for Bruce NGS ...
- Table D.18 Blister growth rates for Pickering ...
- Table D.19 Blister growth rates for Pickering ...
- Table D.20 Blister growth rates for CANDU-6, 1...
- Table D.21 Fatigue crack growth constants for ...
- Table D.22 Radial DHC growth rate — Matrix (XT...
- Table D.23 Radial DHC growth rate — Validity l...
- Table D.24 Axial DHC growth rate — Matrix (XTX...
- Table D.24A Axial DHC growth rate — Engineerin...
- Table D.24B Axial DHC growth rate — Quantiles ...
- Table D.25 Axial DHC growth rate — Validity li...
- Table D.25A Axial DHC growth rate — Parameters...
- Table D.25B Axial DHC growth rate — Components...
- Table D.25C Axial DHC growth rate — Validity l...
- Table D.26 Fracture toughness – components WLT...
- Table D.27 Fracture toughness – components WUS...
- Table D.28 Variation with hot hours of residua...
- Figure D.1 Deterministic fatigue crack initiat...
- Figure D.2 Fatigue crack initiation evaluation...
- Figure D.3 Fatigue crack growth rates in water...
- Figure D.4 Generalized crack shape for through...
- Figure D.5 Lower-bound fracture toughness and ...
- Figure D.6 Plot of critical crack length versu...
- Annex E (informative)
- + Annex F (informative)
- + F.1 Introduction
- F.1.1 General
- F.1.2 Prerequisites
- F.1.3 Required information
- F.1.4 Symbols and abbreviations
- F.2 Calculation of CSCDP
- F.3 Calculation of Hall
- + Annex G (informative)
- + G.1 Introduction
- G.1.1 General
- G.1.2 Summary of uncertainty analysis methodolo...
- G.1.3 Definitions
- + G.2 Methodology for performing uncertainty anal...
- G.2.1 General
- + G.2.2 Identification of influential variables
- G.2.2.1
- G.2.2.2
- G.2.2.3
- G.2.2.4
- G.2.2.5
- G.2.2.6
- G.2.2.7
- G.2.2.8
- + G.2.3 Characterization of uncertainties for inf...
- + G.2.3.1 General
- G.2.3.1.1
- G.2.3.1.2
- G.2.3.1.3
- G.2.3.1.4
- + G.2.3.2 Components of uncertainties
- G.2.3.2.1
- G.2.3.2.2
- G.2.3.2.3
- G.2.3.2.4
- G.2.3.2.5
- + G.2.3.3 Approaches to uncertainty characterizat...
- G.2.3.3.1
- G.2.3.3.2
- G.2.3.3.3
- G.2.3.3.4
- + G.2.4 Use of expert judgment
- G.2.4.1
- G.2.4.2
- G.2.4.3
- G.2.4.4
- G.2.4.5
- G.2.4.6
- + G.2.5 Incorporation of uncertainty characteriza...
- G.2.5.1 General
- G.2.5.2 Incorporation options
- + G.2.5.3 Uncertainty propagation
- G.2.5.3.1
- G.2.5.3.2
- G.2.5.3.3
- G.2.5.3.4
- G.2.6 Reporting results of uncertainty analysis...
- Table G.1 Typical components of uncertainties ...
- Figure G.1 Flow chart for uncertainty analysis...
- + Annex H (informative)
- H.1 Introduction
- + H.2 Convergence
- H.2.1 General
- H.2.2 Distributed input variables
- + H.2.3 Convergence criterion
- H.2.3.1 General
- H.2.3.2 Convergence for specific types of proba...
- H.2.3.3 Convergence Criterion Based on Evaluati...
- H.2.4 Review of output
- H.3 Limitations
- Table H.1 Minimum number of simulations for sp...
1.1
This Standard specifies the technical requirements for the owner/operator to evaluate cold-worked Zr-2.5 wt% Nb alloy pressure tubes in operating CANDU reactors for continued operation. Clause 13 of CSA N285.0/N285.6 Series requires that when in-service inspection results or material surveillance results do not satisfy the requirements of the original inspection program, a fitness-for-service evaluation must be performed in accordance with CSA N285.4 to demonstrate acceptance. The requirements of this Standard address the specific fitness-for-service evaluation requirements of CSA N285.4, Clause 12.
1.2
This Standard applies only to cold-worked Zr-2.5 wt% Nb alloy pressure tubes in operating CANDU reactors and to evaluation of the volumetric inspection results, pressure tube to calandria tube contact, and material surveillance measurements listed herein. The definition of pressure tube material types within the scope of this standard is provided in CSA N285.0/N285.6.1 Series.
1.3
This Standard does not apply to evaluation of pressure tube dimensional changes (other than pressure tube to calandria tube contact), material property surveillance measurements beyond those defined in CSA N285.4, or to other reactor types. This Standard does not apply to pressure tube materials other than cold-worked Zr-2.5 wt% Nb.
In this Standard, “shall” is used to express a requirement, i.e., a provision that the user is obliged to satisfy in order to comply with the Standard; “should” is used to express a recommendation or that which is advised but not required; and “may” is used to express an option or that which is permissible within the limits of the Standard.
Notes accompanying clauses do not include requirements or alternative requirements; the purpose of a note accompanying a clause is to separate from the text explanatory or informative material.
Notes to tables and figures are considered part of the table or figure and may be written as requirements.
Annexes are designated normative (mandatory) or informative (non-mandatory) to define their application.
You may comment on any section of this document by clicking the “Submit Comment” link at the bottom of the relevant section.